Allowed Tables and Charts: Tables of Steel Sections, Egyptian Code of Practice (ECP)
This exam measures ILOS No: (a4.1, a4.2, a13.1, a13.2, a14.2, b13.1, b15.1, d3.1)

- Drawings should be neat, detailed and fully dimensioned.
- Any missing data may be reasonably assumed.

Read carefully the given data and solve the required questions. (Total Marks: 115)
The structure shown in Figure (1) presents a structure system used to cover a workshop of dimensions ($21 \mathrm{~m} \times 36 \mathrm{~m}$). The structure comprises 7 frames (ABC) spaced at 6.0 m . Each frame is supported from one side on a steel column (AB) and from the other side on a steel trussed frame (DEFG) of span 36m. The trussed frame (shown in Figure (2)) comprises 12 panles of 3 m each.

Given:

- The total weight of steel $\quad=60 \mathrm{~kg} / \mathrm{m}^{2}$
- Covering weight $=20 \mathrm{~kg} / \mathrm{m}^{2}$
- Design Live Load $\quad=90 \mathrm{~kg} / \mathrm{m}^{2}$
- Steel to be used $=$ ST. 37
- Weld = Class I
- Gusset Plate Thickness $\quad=12 \mathrm{~mm}$
- Bolts for field connections $\quad=$ HSFG bolts M20 (10.9)
(For M20, $\mathrm{A}=3.14 \mathrm{~cm}^{2}, \mathrm{~A}_{\text {net }}=2.45 \mathrm{~cm}^{2}, \mathrm{~T}_{0}=15.43 \mathrm{t}$, and $\mathrm{P}_{\mathrm{s}}=4.9 \mathrm{t}$)

Required:

1. Draw to a scale $1: 100$ all necessary views of the bracing system required for the stability of the structure (Plan for using a tie rod system).
2. Design a suitable \mathbf{C}-section for the marked Side Purlin shown in Figure (1) using a single tie rod system
3. Design the marked members U3, L3, D3 and choose suitable sections for $\mathbf{U 2}, \mathbf{L} 2, \mathbf{D} 2$.
All forces are given in drawing. (CASE A Only is considered)
4. Design the connections in the marked part.
5. Design a suitable cross section for the monorail girder shown at joint \mathbf{D}
6. Design a suitable BFIB section for column ABC.
7. Design a suitable hinged base for the column ABC.
8. Draw to scale 1:10 full details for the area included in the dashed rectangle.
9. Design and draw the connection shown in Figure (3).

